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1. Introduction and Background

A series of papers recently appeared on consistency of nonparametric regression

function estimators and rates of consistency. (See Collomb, 1981 for a bibliogra-

phic review). In the present work we obtain pointwise rates of consistency by de-

monstrating a law of the iterated logarithm for a large class of regression func-

tion estimators. The estimators we shall look at are of the following type:

n
(1.1) m n(x)= n- 1 nK (X X.)y.i=1 r(n) ( x ; i)Yi

where' {K rEI} denotes a sequence of delta functions (or kernel sequence) and

{(Xi,Yi)} i=l,2,...,n are independent observations of a distribution with unknown

positive density f(x,y).

Most nonparametric estimators of m(x) = E(YiX=x) are of this form, for in-

stance, the Nadaraya-Watson kernel estimator (more generally delta function esti-

mators) or orthogonal polynomial estimators.

A major result in the theory of consistency of kernel type estimators has

been obtained by Collomb who gave necessary and sufficient conditions for consis-

tency of the Nadaraya-Watson kernel estimate. For generalizations and related

work see the bibliographic review of Collomb (1981) where parallel work on ortho-

gonal polynomials is also presented. Stone (1977) considered the estimator de-

fined in (1.1) and gave general conditions on the weights Kr(X; Xi) for m n(X) to

be consistent in Lr i.e. for

E IMAn (x)-m~x) I r _ 0

whenever EIY~r < _ . Stone, however, points out that it is not clear from his

results when an estimator of the Nadaraya-Watson type, to be discussed in section

r4, is consistent in Lr . In the field of density estimation Wegman and Davies

(1979), Hall (1981), Csorgo and Hall (1982) have given a law of the iterated

logarithm for different kinds of density estimators.
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We begin by showing a law of the iterated logarithm for the shifted estimate

(1.2) m (x) - Em Cx)
n n

That is, we center m Cx) around its expectation. We could also center it around
n

m(x), the regression curve,but since the bias is purely analytically handled, it

suffices to look at (1.2). The handling with these bias terms using different

smoothness assumptions of m(.) and Kr(.) is delayed to the sections where we ap-

ply the general result of section 2. I section 4 we show a law of the iterated

logarithm for the Nadaraya-Watson kernel estimate with known and unknown marginal

density fx(x) of X and in section 5 we show a similar result for estimators based

on orthogonal polynomials.

2. A law of the iterated logarithm for a special triangular array.

Let kXi,Yi)} be a sequence of independent and identically distributed rv's

2- with pdf f(x,y) and cdf F(x,y) and EY <-. As in (1.1) let {Kr rEI) be a sequence

of real valued functions each of bounded variation and define

n
Sn(r) = {Kr(Xi)Yi-E[Kr(Xi)Yi]}

which is actually a multiple of (1.2) where we omitted the design point x for

convenience. Define also

2a(r,s) = cov{Kr (X)Y,K sCX)Y} and a (r) = o(r,r)

We will establish conditions similar to Hall (1981) and Csorgo and Hall (1982)

under which SnCr), r=r(n)cI follows the law of the, iterated logarithm. We de-

monstrate that

limsup t [O(n)]- S n(r(n)) f 1 a.s.In

_J

S...
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where *(n) = (2na2 (r)loglogn) 1/2. The set {Sn(r), n > 11 is, in fact, a tri-

angular sequence, and in this section it is shown that under certain assumptions

S may be approximated by a Gaussian sequence with the same covariance structure.
n
A law of the iterated logarithm can then easily be deduced using techniques simi-

lar to Hall (1981).

We shall also make use of the Rosenblatt transformation (Rosenblatt, 1952)

T(x,y) = (FyjxFx)(X,y)
, .)n into a sequence of mutually

transforming the original data points {(Xi ,Y i
)

i=l

independent uniformly distributed over [0,1] 2 random variables {(X', Y,}fn
i'ii=l"

This transformation was also employed by Johnston (1982) and Mack and Silverman

(1982) to obtain strong uniform consistency of Nadaraya-Watson kernel type re-

gression function estimates. Define

Vn(U) f dK (x)l + IK (-u I , n->l
nU n<oo.n ~n ~ n

where {u } is a sequence of constants O<u !_n n

Theorem 1. Suppose that the sequence of kernels Kr(n) and {u n } satisfy

(2.1) a nV n(U n) = o(n1/2a(r)(loglogn) 1/2/(logn) 2) I

where {a n  is a sequence of positive constants tending to infinity.

I o(r)-2(loglogn)- [E{K2 (X).I(IXI>U )}] <
st-3 r n

OD

(2.2) 1 a(r)- 2 (loglogn)-l[E{K2(X).I(jXl<Un).Y 2 .I(IYI>an)I] <

Then on a rich enough probability space there exists a Gaussian sequence fT I
n

with zero means and the same covariance structure as (S n(r)), and such that

S (r) - T ao(n1/2o(r)(loglogn) /2) a.s.n n

"9

. . -

* lf l .
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The main idea of the proof is as in Hall (1981) (for density estimators) and in

Hirdle (1983) (for regression estimators) the strong approximation of F n(z)-F(z)

(density case)and of F (x,y)-F(x,y) (regression case) respectively. Hail employs

for the case of density estimation the results of Komlos, Major, Tusnady, (1975).

We will make use of a similar result (for the two dimensional case) by Tusnady

A
. (1977). The fundamental connection between the regression estimator m (-) and

its strong approximation by a Gaussian process is established by the following

lemma.

Lemma 1. On a rich enough probability space there is a version of a Brownian

Bridge B(x',y'), (x',y')c[O,l]2 such that
-C3u

P{suplen(X,y)I > (Cllogn+u)logn} < C 2e
x,y

where CI,C 2,C3 are absolute constants and

e n(X,y) = n[(Fn (xy)-F(x,y))-B(T(x,y))]

Proof. This is clear from Tusnddy (1977) and the fact that n 1/ 2 F (T (x',y') -

" F(T- (x',y'))], (x',y')E[O,1] 2 is the empirical process of {(Xi,Y ),n=l (Rosen-

blatt, 1952).

The following theorem establishes now under regularity conditions on the co-

variance matrix a(r,s) that a law of the iterated logarithm (LIL) holds for

A
m n(x) the regression function estimator as defined in (1.1).In

Theorem 2. Suppose that (2.1) and (2.2) hold and that

(2.3) lim limsup sup Ia(r(m),r(n))/ 2(r(n)) - 11 = 0C-1- n+ m e cr

when r = {M: Im-nl gn}. Then
fl,c

limsup * [ (n)] S n(r) 1 1 a.s.

-:_n

.5. ~ ~ ,. . * 
"

' ' o , . .- . .. , " .. . " , " . . . . . . -
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Condition (2.3) is the same as in Hall (1981) but with

O(rlr 2) = Y2K (x)K (x)f(x,y)dxdy instead of his a rl,r 2  f K r(x)K (x)dx

in the case of estimating the uniform density.

3. Proofs.

To establish Theorem I we set

00

T n nff Kr(x)ydB(T(x,y))

B(x',y') being the Brownian Bridge of Lemma 1 and show that the difference

satifiesRn = n I(Sn(r)'Tn) = n J- l  Kr(x)yden(xy)~satisfies
o~-1/2 1/2

(3.1) R = o(n a'r)(loglogn) /2 a.s..4 n

%- INote first that T has the covariance structure ascribed to it in Theorem 1.

This follows from the fact that the Jacobian J(x,y) of T(x,y) is J(x,y) = f(x,y),

the joint density of (X,Y) (see Rosenblatt, 1952) and the following lemma, stated

without proof.

Lemma 2. Let Gr (x,y) = Kr(x)y. Then

-1 11 -(ZI'Z 2) = (ff Gr (T (x,y'))dB(x,y') I ff G r (T (x,y'))dB(x,y'))
00 100 2

has a bivariate normal distribution with zero means and covariances

cov(ZZ 2) ff Kr (X)Kr (x)y 2f(x,y)dxdy
1 2r

- f K Kr (x)yf(x,y)dxdy] ff K (x)yf(x,y)dxdy]

2-*,:: = Or~ 2

* To demonstrate (3.1) we split up the integration regions and obtain

7

,IRI< I R.
"', 

j= ,n

a,
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where

R =~ In'I f f K T(x) yde n(x,y)I

I, Ix1:u n IYt5a~ r

-:5 v V U )-2a -n supj le (x.yJI
nfl nn

I.. r i.n 1 1Jn

-E[K (X)ICIXI>u)Y.I(IYI:5a)]

R =in- 1 R (3I3,n n

R~3  [K (X . lIXIxi:u )-Y..I(JY.i>an)]
1,n1 r n 1

-E[K (X) .I(IXI~u ).Y-I( IYI>a~)rnn

- E[Kr(X IIXIu YI YIa

R7, = n- f f K rCx)ydB(T(x,y))l

Ixk~un IyI>a~ n

From Leolna 1 we deduce that n-Isuplen (x,y)l OI -=lgn 1 2~
OX (on))ay.
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and so by condition (2.1) we conclude that

*(3.2) R ln= O(n 1 /2 ar(olg)1/2 s.

Next observe that {R 2 1 lsi~sn are independent and identically distributed random
i,n

* variables. We then have by !4arkov's inequality that for any c>O

i=1 i,n

-2 -2 1. (2l

So with the assumption EY 2<- and condition (2.2) it follows with the Borel-Cantelli

Lemma that

(3.3) R 2, 2o(n- / a(r)(loglogn) 12) a.s.

The terms R3,n' R4,n may be estimated in the same way using Markov's inequality

and condition (2.2) and we therefore have

R 3 ,n = o(n-1 /2 a(r)(loglogn) 1/2 ) a
(3.4)

R4 ,n =o(n- / a(r)(loglogn) 12) a.s.

The remairing terms, R , R6n and R 7nare all Gaussian with mean zero and

standard deviations

l,n

{E(R (3 )) 2 1/2
l~n

{E(R (4)) 2 1/2

l,n

respectively. Therefore, R5 ~ for instance, can be computed by

-1/2 1/
P(R 5,n>cn ca(r) (loglcgn)/2

= ZL..wt~c ,n

NO .
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where 4 denotes the cdf of the standard normal distribution. A similar equality

holds for R6,n and R7 ,n; therefore, we conclude in view of condition (2.2) and

the usual approximations to the tails of the normal distribution that

RS'n = o(n-1/2(r)(loglogn)l/ 2) a.s.

(3.5) R6,n = o(n-1 / 2a(r)(loglogn) 1/2) a.s.

"7 = o(n- 1/2o(r)(loglogn) 1/2 )

Finally the desired result of Theorem 1 follows by putting together statements

(3.2)-(3.5) respectively.

The proof of Theorem 2 follows in much the same way as Theorem 1 in Hall

(1981, p. 49). We only have to note that lemma 1 in Hall (1981, p. 49) has to

be replaced by (2.3). Setting YE 1 in all our derivations shows that Hall's

result follows from ours.

/ Kernel estimators.

Two types of kernel estimates of the regression function m(x) will be con-

sidered here. The first is due to Nadaraya (1964) and Watson (1964) and is mo-

tivated by the formula

m(x) = {fyf(x,y)dyl/fx(x)

We define the Nadaraya-Watson estimate as follows:

n n

m*(x) = (nh) 1 K((x-X.)/h)Y./((nh) K((x-X.)/h]
n i=l 1 1i--1 1

Consistency and asymptotic normality of mn(x) were considered by Schuster (1972),

Johnston (1979), Mack and Silverman (1982) among others. If the marginal density

f X(x) is known, it is appropriate to replace the density estimate in the denomina-

tor of mn(x) by the true density fx(x). This leads to the following estimate:
n -
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.'()= nh) K((x-X.)/h)Yi/fx~x)n-'i=1 1

considered by Johnston (1979,1982).

Let us define S2Cx) = E(y2IX=x), V2(x) = S2(x) - m2(x), and assume that

. fx(x), m(x) are twice differentiable and S 2(x) is continuous. We assume further

.~ that the kernel K(o) is continuous, has compact support (-1.1) say and that

l uK(u)du = 0. This implies that v (u ) as used in (2.1) is constant for

large enough u . We will make use of the following assumptions:n

(4.1) nh /loglogn - 0 as n -

(4.2) h(loglogn)-lg[y2I(,IYI>a < C

(n=3

where {a is as in (2.1), (2.2) such that
n

an = o((nh-1 loglogn) 1/2/(logn) 2

(4.3) lim limsup sup IhCm)/h(n) - 11 = 0
-E 0 n-*o mer

,, E

We then have the following theorem for m n (x).n

Theorem 3. Under the assumptions above

limsup x[mn(x) -m(x)](nh/21oglogn) 1/2

= [S 2 (x)f K2 (u)du/f X(X) 1/2 a.s.

The Nadaraya-Watson estimate follows also a LIL as the following theorem shows.

Theorem 4. Under the assumptions above and I n 2 h 1 < CO

n=l

1/2limsup + [m*(X)-m(x)](nh/21oglogn) /
n- -n* n

= [V2 (x)f K2(u)du/fX(X)] 1/2 a.s.!l bs.

..............................
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Note that the only difference between Theorem 3 and Theorem 4 is the different

scaling factor. Since in general S (x) V (x) we may expect closer asymptotic

confidence bands for m*(x). This observation has already been made by Schuster

n

(1972) and Johnston (1982). This papers together with Hurdle (1983) thus solves

the question raised by Johnston (1982) whether one should be able to compute

asymptotic confidence intervals for m*(x). Johnston derived (uniform) confidence
n

intervals for m (x) only.
n

Proof of Theorem 3. We first show that we could center mn (x) around Em (x).

This follows from

Ei,(x) = fx(x) 1  K((x-u)/h)m(u)f (u)du = m(x) + 0(h2)

using the smoothness of m(-) and f and the assumptions on the kernel K(o)

(Parzen, 1962; Rosenblatt, 1971).

From assumption (4.1) it thus follows that the bias term (Em n(x)-m(x))

vanishes of higher order. So it remains to show that

"-.;(4.4) limsup * [m n(X)-Em n (X)]/(nh21oglogn)l/

= [S2 x-fx(x)f K2 (u)du]1/ 2 a.s.

n n
A

where m n(x) = K K((x-Xi)/h)Y i = 1 (X i)yi
i~l i=l

From the assumptions on the kernel K(.) we conclude that 6 (u) = h- K(u/h)
n

is a delta function sequence (DFS) (Watson and Leadbetter, 1964). We make now

use of this general approach in terms ofDFS's and obtain the following:

h •2 (h) = hf 62 (xu)S
2(U)fc(U)du-h[f 6 (x-u)m(U)£(U)du]

2

n--Xnn

"" S2 x K 2

S (x) f (x)f K (u)du as n "

This follows from Watson and Leadbetter (1964) by noting that S (.)fx) is

amX
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K continuous and {h(f K2)-1 - 2 (u)} is itself a DFS. The use of this DFS-technique
qn

would also considerably simplify Hall's proof (1981) for Rosenblatt-Parzen kernel

density estimates.

To establish (4.4) with the use of theorem 2 we have to show that (2.3) holds.

We must thus demonstrate that if h,k+O such that h/k l (in view of assumption

* ~ (4.3)), then

* (4.5) h- cov{K((x-X)/h)Y , K((x-Y)/k)Y} - 1

But EK((x-X)/h)Y = hf 6n(X-u)m~u)Ofx(u)du = o(h+1/2), and so by the computations

2
:, for a (h) above it remains to demonstrate that

h-lf [K((x-u)/h)-K((x-u)/k)] 2S2(u)f d 0

2From the boundedness of S2() and fx&) it is clear that the integral above is

- dominated by

Mf [K(u) -K(uh/k) ] du

The kernel K is continuous and so K(uh/k) + K(u) a.e. and it follows that (4.5)

, holds.

Assumption (2.1) follows from (4.2) since K(.) has compact support and thus

v (Un) = const. for n large enough. In view of the asymptotic formula for a2 (h)
n n

above we have by assumption (4.2)

an = o((no2 (h)loglogn) 
1/2/(logn) 2)

*' which is assumption (2.1). Finally, assumption (2.2) follows immediately from

2 _-

°°(4.2) since K has compact support and as above a (h) h-1. Theorem 3 thus fol-

* lows from theorem 2.

Proof of theorem 4. To prove theorem 4 we decompose

-1A
m*(x) - m(x) = [(nh) -ln(x)-m(x)f (x)]/f,(x)nn n X

• (x) [m Cx) -m(x)1 [fx~x) -f(X)]

- .- .. - .........-.. ..... ... .
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where f, (x (nhIIJ K((x-X.)/h) is a density estimate of fx(x). Now from
n i X

Hall (1981), Theorem 2 it follows that

(4.6) limsup ± ff (x) -f X(x)]I(nh/2loglogn)1/
n4WD

=[f X(x)f K 2(u)du] 1/2  a.s.

if we use assumption (4.1) which ensures that the bias (Efn(x)-f X(x)) =O~h 2

vanishes. Note that Hall's assumption (11) is not necessary here since we assume

that K(-) has compact support. From Noda (1976) we conclude that In-2 h- -<

makes m*(x)-m(x)=o(l) a.s.. This and (4.6) thus yield that the second term on
n

1/2
the RHS of the decomposition above is of order otnh/2oglogn) )a.s.

The first suimmand of the decomposition above can be written as

(nh) l(m-Em)/f + ((nh) lEm- f)/f -m(f -Ef )/fx + m(f -Ef )/f~

As in the proof of theorem 3 it follows by assumption (4.1) that the bias terms

-1 A
((nh) Ein-mf X) and (Ef n-f ) vanish. It remains to show

-I A_ A
(4.7) (nh) (rn-Em) -m(f -Ef)n

follows the LIL, i.e.

r-Em A mA E 1/2
limsup t [(nh) - m A A~ E )](nh/21oglogn)

___n n

[V2 (*jf X Wf K 2(u)du] 1/2  a.s.

This can be deduced from theorem 2, if we rewrite (4.7) as

(nh) 1 [K h(X i)y i-EK h(X)YI m(x)(nh)' h [~(X i)-EIh(X)]
i=1 izl

=~ ~ (n)i K )[Y.-m(x)I EK h(X)[Y-m(x)]1

Next we show that (4.3) holds. The variance for the sequence above is now:
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ha 2(h) = hof 62(x-u)[S2 (u)-m 2(x)]fx(u)du

h[f 6n (x-U) [m(u) -m(x) ] f x(u)du] 2

V2(x)-fx(x)f K2(u)du as n-o

As above in the proof of theorem 3 we conclude that (2.3) holds. Theorem 4 thus

follows from theorem 2.

S. Orthogonal polynomial estimators.

Estimators of the regression function m(x) based on orthogonal polynomials

fit also in the general framework developed in the first section. We define the

estimate based on a system of orthonormal polynomials on [-1,1] as follows:

m (x) = n-1  K (x;Xi)Y/n 1  n
i=l m i=

where m = m(n) tends with n to infinity and

m
K (x; xi) = I e(x) e (XY)m 1 j=0 ( 1

and {e.(.)} is the orthonormal system of polynomials.3

In the case of a known marginal density fx(x) we consider

I(x) = n K Cx; X )Yifx)
n i= m i i X

As in section 4 let S2 (x) be the second conditional moment of Y and V2 (x) the

conditional variance respectively. We further assume that

fx(x) has compact support in (-1,1)

(1-x2 )'/ 4fx(x) is integrable on (-1,1).

, o , ,% ~ . •# ... o* *.* ._ •. .. ... . . . . . . . . ..,. . .... . . . . ., . •s. . - , . . •. ., , .. • . . .*
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We consider only the case of e.( p.(-) =orthonormal Legendre polynomials

here and assume that the following holds:

(5.1) lii limsup sup Im(p)/m(n)-lI 0
s+-O n-. p

n=3c

4when {a n is as in (2.2), (4.2) a sequence of constants tending to infinity such

that

a n = o(n 1/2 m(loglogn)1/2 /(logn) 2)

(5.3) n/(m loglogn) -~ 0 as n *

We have then the following theorem for m'(x) and mn (x).n n

Theorem 5. Under the assumptions above

limsup *[ml(x) -m(x)] (n/2mloglogn) 1/2

=S 
2(x)/(fx(x)"1T)] 1/2 (l-2 )-1/4 a.s.

and

limsup t [; (x)-m(x)](n/2mloglogn) 
1/2

n-)-,n

=[V 2(x) /(fx (x) IT) 1 12(1-x 2)- / a.s.

Proof. We first show that the LIL for m'(x). The second assertion will then
n

follow as theorem 4 from theorem 3. A's in theorem 3 we show first that the bias

(Em'(x)-m(;x)) is negligible.n

EM'(x) = [f (x) 1 EK (x; X)Y
n xM

= [fx(x)]11f K m(x; u m (u)f X(u) d

= m(x) + 0(M- 2
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y a slight modification of the argument proving theorem 1 in Walter and Blum

(1979). By the same arguments as in Hall's (1981) proof of his theorem 3 (p. 60)

we conclude that

am ECK2(x; X)y 2  m * S2(x)/([fx(x)'l](l-x
2) 1 / 2)

Assumption (2.1) follows now from (5.2) and

fdK m(x; u)I = 0(m2

Assumption (2.2) follows also from (5.2) so we finally derive the desired result

from theorem 2, since (2.3) may be proved as in theorem 3 using (5.1).
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